- シンクタンクならニッセイ基礎研究所 >
- 保険 >
- 保険会社経営 >
- パンデミックリスクの計量-予測モデルの精度を高めるには、どうしたらよいか?
パンデミックリスクの計量-予測モデルの精度を高めるには、どうしたらよいか?

保険研究部 主席研究員 兼 気候変動リサーチセンター チーフ気候変動アナリスト 兼 ヘルスケアリサーチセンター 主席研究員 篠原 拓也
このレポートの関連カテゴリ
文字サイズ
- 小
- 中
- 大
パンデミックの発生や進行には、不確実な要素が多い。確率論的手法は、この不確実性を捉えるのに役立つ。また、この手法では、様々な結果に至る確率を予測することができる。確率論的方法として、時系列モデル、疫学的モデル、カタストロフィーモデルが、代表的なものとして挙げられる。
(1)時系列モデル
過去の事象が、将来の発生に影響を及ぼすとみて、その関係を表したモデルである。このモデルは、算式中に、確率的に変動する残差項を持っており、これが不確実性を演出する。時系列モデルには、いくつか種類がある。代表的なものとして、自己回帰和分移動平均モデル(ARIMA)や、一般化自己回帰条件付不均一分散モデル(GARCH)が挙げられる5。これらのモデルでは、過去の経験データと、モデル算式の間で、整合性を保つことが必要となる。そのために、過去のデータを、将来予測データの一部として用いることが行われる。
通常、パンデミックの初期段階では、患者数や死亡者数が、指数関数のように爆発的に増加する。この段階では、例えば、今週の感染率は、先週の感染率との関連性が強いといった傾向があり、時系列モデルは有用と言える。このモデルにより、感染率や死亡率の将来のトレンドや、分散等を見積もり、将来の患者数や死亡者数を予測できる。その後、パンデミックは、ある時点をピークに、拡大が減速に転じる。このモデルは、感染が爆発的に拡大する初期段階で活用する必要がある。
また、時系列モデルは、過去のデータが正確であることを前提としている。しかし、パンデミックの初期段階では、医療体制や、患者の隔離体制が不十分であるなど、医療現場が混乱していることが多い。このため、報告されたデータの正確性について、十分な信頼が置けない場合もある。
(2)疫学的モデル
感染の拡大を、疫学の観点から捉えたモデルである。これは、病気の発生の進行をシミュレーションするのに有用である。一般的には、コンパートメントモデルが用いられる。それは、パンデミックに直面している人々の集団を、コンパートメントと呼ばれる疾病段階に区分する。通常、疾病段階として、S(Susceptible, 感受性宿主)、E(Exposed, 感染待ち時間)、I(Infectious, 感染性期間)、R(Removed, 回復・死亡・免疫)の4つが考えられる。モデルにより、これらの疾病段階を統合したり、細分化したりすることができる。推移率を置いて、各疾病段階の人数の変化を算式で表す。その算式を、確率過程とすることで、確率的変動を組み込む。このモデルでは、毎日の各コンパートメントの人数を予測できる。そして、パンデミックは、感染者数が極大点に達するまで拡大し、その後、減少していく様子を表す。そのため、パンデミックの発生初期段階や、その後の減速段階で有用である。
(3)カタストロフィーモデル
第3の方法として、カタストロフィーモデルが挙げられる。これは、テイルリスクを見積もるのに、適している。カタストロフィーモデルは、1980年代後半に、アメリカで、ハリケーンのリスクを分析する際に導入されたと言われる。現在は、パンデミックを含む、多くのリスク分析に用いられている。
カタストロフィーモデルは、発生し得るシナリオ(確率カタログ)を用いて、リスクの進行を、幅広く予測する。通常、多くのシミュレーション計算を走らせる。その際、初期条件は、各種の利用可能なデータや、科学的検討の上で設定された統計的分布から抽出される。この方法では、発生し得る事象の幅広い予測ができる。このため、様々な損失水準の発生確率を見積もることができる。
次の図表は、一般的なパンデミックのカタストロフィーモデルの予測過程を示している。
5 ARIMAは、AutoRegressive Integrated Moving Average modelの略で、残差の分散が時期によらず均一であることを前提にしている。一方、GARCHは、Generalized AutoRegressive Conditional Heteroscedastic modelの略で、残差の分散が時期により不均一であるとの前提を置いている。いずれも、為替レートや株価などの将来予測に、よく用いられている。
(2016年12月13日「保険・年金フォーカス」)
このレポートの関連カテゴリ

保険研究部 主席研究員 兼 気候変動リサーチセンター チーフ気候変動アナリスト 兼 ヘルスケアリサーチセンター 主席研究員
篠原 拓也 (しのはら たくや)
研究・専門分野
保険商品・計理、共済計理人・コンサルティング業務
03-3512-1823
- 【職歴】
1992年 日本生命保険相互会社入社
2014年 ニッセイ基礎研究所へ
【加入団体等】
・日本アクチュアリー会 正会員
篠原 拓也のレポート
日付 | タイトル | 執筆者 | 媒体 |
---|---|---|---|
2025/04/28 | リスクアバースの原因-やり直しがきかないとリスクはとれない | 篠原 拓也 | 研究員の眼 |
2025/04/22 | 審査の差の定量化-審査のブレはどれくらい? | 篠原 拓也 | 研究員の眼 |
2025/04/15 | 患者数:入院は減少、外来は増加-2023年の「患者調査」にコロナ禍の影響はどうあらわれたか? | 篠原 拓也 | 基礎研レター |
2025/04/08 | センチネル効果の活用-監視されていると行動が改善する? | 篠原 拓也 | 研究員の眼 |
新着記事
-
2025年05月01日
日本を米国車が走りまわる日-掃除機は「でかくてがさつ」から脱却- -
2025年05月01日
米個人所得・消費支出(25年3月)-個人消費(前月比)が上振れする一方、PCE価格指数(前月比)は総合、コアともに横這い -
2025年05月01日
米GDP(25年1-3月期)-前期比年率▲0.3%と22年1-3月期以来のマイナス、市場予想も下回る -
2025年05月01日
ユーロ圏GDP(2025年1-3月期)-前期比0.4%に加速 -
2025年04月30日
2025年1-3月期の実質GDP~前期比▲0.2%(年率▲0.9%)を予測~
レポート紹介
-
研究領域
-
経済
-
金融・為替
-
資産運用・資産形成
-
年金
-
社会保障制度
-
保険
-
不動産
-
経営・ビジネス
-
暮らし
-
ジェロントロジー(高齢社会総合研究)
-
医療・介護・健康・ヘルスケア
-
政策提言
-
-
注目テーマ・キーワード
-
統計・指標・重要イベント
-
媒体
- アクセスランキング
お知らせ
-
2025年04月02日
News Release
-
2024年11月27日
News Release
-
2024年07月01日
News Release
【パンデミックリスクの計量-予測モデルの精度を高めるには、どうしたらよいか?】【シンクタンク】ニッセイ基礎研究所は、保険・年金・社会保障、経済・金融・不動産、暮らし・高齢社会、経営・ビジネスなどの各専門領域の研究員を抱え、様々な情報提供を行っています。
パンデミックリスクの計量-予測モデルの精度を高めるには、どうしたらよいか?のレポート Topへ