(参考資料) [IPCC報告書における参考文献は、そのままの形で記載]
"Climate Change 2022: Impacts, Adaptation and Vulnerability"(IPCC WG2, 2022) =(「IPCC報告書」)
「広辞苑 第七版」(岩波書店)
「ウイルス・細菌の図鑑 - 感染症がよくわかる重要微生物ガイド」北里英郎・原和矢・中村正樹著(技術評論社, 2015年)
「動物由来感染症ハンドブック2018」(厚生労働省)
"World's Deadliest Animals"(WHO, 2014)
M’Bra, R.K., et al., 2018: Impact of climate variability on the transmission risk of malaria in northern Cote d’Ivoire. PLoS ONE, 13(6), e182304, doi:10.1371/journal.pone.0182304.
Siraj, A., et al., 2014: Altitudinal changes in malaria incidence in highlands of Ethiopia and Colombia. Science, 343(6175), 1154–1158, doi:10.1126/science.1244325.
"Rare Malaria Outbreaks Hit South Amid Scorching Temperatures—Here's Why Climate Change Could Make Them More Common"Simone Melvin (Forbes, June 27, 2023)
Bhatt, S., et al., 2013: The global distribution and burden of dengue. Nature, 496(7446), 504–507, doi:10.1038/nature12060.
Obaidat, M.M. and A.A. Roess, 2018: First report on seroprevalence and risk factors of dengue virus in Jordan. Trans. R. Soc. Trop. Med. Hyg., 112(6), 279–284, doi:10.1093/trstmh/try055.
Duarte, J.L., F.A. Diaz-Quijano, A.C. Batista and L.L. Giatti, 2019: Climatic variables associated with dengue incidence in a city of the Western Brazilian Amazon region. Rev. Soc. Bras. Med. Trop., 52, e20180429, doi:10.1590/0037-8682-0429-2018.
Pena-Garcia, V. H., O. Triana-Chavez and S. Arboleda-Sanchez, 2017: Estimating effects of temperature on dengue transmission in Colombian cities. Ann. Glob. Health, 83(3), 509–518, doi:10.1016/j.aogh.2017.10.011.
Quintero-Herrera, L.L., et al., 2015 Potential impact of climatic variability on the epidemiology of dengue in Risaralda, Colombia, 2010–2011. J. Infect. Public Health, 8(3), 291–297, doi10.1016j.jiph.2014.11.005.
Petrova, D., et al., 2019: Sensitivity of large dengue epidemics in Ecuador to longlead predictions of El Nino. Clim. Serv., 15, doi:10.1016/j.cliser.2019.02.003.
Chuang, T.W., L.F. Chaves and P.J. Chen, 2017: Effects of local and regional climatic fluctuations on dengue outbreaks in southern Taiwan. PLoS ONE, 12(6), e178698, doi:10.1371/journal.pone.0178698.
「チクングニア熱(Chikungunya Fever)とは」(厚生労働省 成田空港検疫所ホームページ)
Yactayo, S., et al., 2016: Epidemiology of Chikungunya in the Americas. J. Infect. Dis., 214(suppl 5), S441–S445, doi:10.1093/infdis/jiw390.
Rocklov, J., et al., 2019: Using big data to monitor the introduction and spread of Chikungunya, Europe, 2017. Emerg. Infect. Dis., 25(6), 1041–1049, doi:10.3201/eid2506.180138.
Paz, S. and J.C. Semenza, 2016: El Niño and climate change – contributing factors in the dispersal of Zika virus in the Americas? Lancet, 387(10020),745, doi:10.1016/s0140-6736(16)00256-7.
Tesla, B., et al., 2018: Temperature drives Zika virus transmission: evidence from empirical and mathematical models. Proc. Royal Soc. B, 285(1884), doi:10.1098/rspb.2018.0795.
Ghimire, S. and S. Dhakal, 2015: Japanese encephalitis: challenges and intervention opportunities in Nepal. Vet. World, 8(1), 61–65, doi:10.14202/vetworld.2015.61-65.
Zhao, X., et al., 2014: Japanese encephalitis risk and contextual risk factors in southwest China: a Bayesian hierarchical spatial and spatiotemporal analysis. Int. J. Environ. Res. Public Health, 11(4), 4201–4217, doi:10.3390/ijerph110404201.
「リフトバレー熱(ファクトシート)」(厚生労働省 成田空港検疫所ホームページ)
Taylor, D., et al., 2016a: Environmental change and Rift Valley fever in eastern Africa: projecting beyond HEALTHY FUTURES. Geospat. Health, 11(1 Suppl), 387, doi:10.4081/gh.2016.387.
Marini, G., et al., 2020: A quantitative comparison of West Nile virus incidence from 2013 to 2018 in Emilia-Romagna, Italy. PLoS Negl. Trop. Dis., 14(1). DOI: https://doi.org/10.1371/journal.pntd.0007953
Ziegler, U., et al., 2020: West Nile virus epidemic in Germany triggered by epizootic emergence, 2019. Viruses, 12(4), doi:10.3390/v12040448.