もう1人も同じである確率

追加情報は、確率に影響を与えるか?

保険研究部 主席研究員 篠原 拓地 tshino@nli-research.co.jp

92年日本生命保険相互会社入社、14年ニッセイ基礎研究所 日本アクチュアリー会正会員 主な著書に『できる人は統計思考で判断する 「自分の頭で考える力」がつく35のレッスン』

確率は奥が深い。次の問題を考えよう。

2人のこどもの問題

ある家庭に、2人のこどもがいます。その うちの1人が、男の子だとわかりました。 このとき、もう1人も、男の子である確率 は、いくらでしょうか。ただし、男の子と女 の子の生まれる確率は同じとします。

慌てていると、次の誤答をしやすい。「2 人のこどものうち、1人が男の子だろう が、女の子だろうが、もう1人の性別に、関 係はないはずだ。問題文は、回答者を混乱 させようとして、無意味な条件をつけてい るのに違いない。男の子と、女の子の生れ る確率は同じだというのだから、もう1人 が男の子である確率は、2分の1だ。|

しかし、冷静になると正しい答えが見 えてくる。「2人のこどもがいる、というの だから、その性別のパターンは、『兄弟』 『兄 妹』『姉弟』『姉妹』の4つしかない。男の子 と、女の子の生まれる確率は同じ、という のだから、これらのパターンは均等に現れ るはずだ。2人のうち、1人が男の子だとわ かったのだから、『姉妹』ということはあり 得ない。残る3つのうち、もう1人も男の子 となるのは『兄弟』だけだ。従って、もう1人 も男の子である確率は、3分の1。」

次に、この問題の応用を考えてみたい。 応用といっても条件が1つ加わるだけだ。

2人のこどもの問題 (何曜日生まれかがわかった場合)

ある家庭に、2人のこどもがいます。その うちの1人が、火曜日生まれの男の子だ とわかりました。このとき、もう1人も、男 の子である確率は、いくらでしょうか。 ただし、男の子と女の子の生まれる確 率、こどもが各曜日に生まれる確率はそ れぞれ同じとします。

慌てていると、次の誤りに陥りやす い。「2人のこどものうち、1人が男の子 だったとして、その男の子が何曜日に生ま れたとしても、そんなことが、もう1人の性 別に影響するはずがない。前の問題で1人 が男の子だったとわかったときに、もう1 人も男の子である確率は3分の1だったか ら、この問題でも3分の1だ。|

しかし、次のように地道に考えてみる。

まず、2人とも男で、兄が月曜日、弟が火 曜日生まれの場合を、(兄月・弟火)と表す ことにする。この場合、弟が火曜日生まれ の男の子なので、問題の条件を満たしてい る。他にも(兄日·弟火)や(兄火·妹土)は、火 曜日生まれの男の子を含むので、条件を満 たす。しかし、(兄水・弟土)や(姉火・弟日) は、2人とも火曜日生まれの男の子ではな いので、条件を満たしていない。

それでは、条件を満たす場合は、どれだ けあるだろうか。書き並べてみよう。

(兄火·弟日)(兄日·弟火)(兄火·妹日)(姉日·弟火) (兄火·弟月)(兄月·弟火)(兄火·妹月)(姉月·弟火) (兄火・弟火) (兄火·妹火)(姉火·弟火) (兄火·弟水)(兄水·弟火)(兄火·妹水)(姉水·弟火) (兄火·弟木)(兄木·弟火)(兄火·妹木) (姉木·弟火) (兄火·弟金)(兄金·弟火)(兄火·妹金) (兄火·弟土)(兄土·弟火)(兄火·妹土)(姉土·弟火)

このように、全部で27通りの場合があ る。それぞれの場合は、同じ確率で発生す る。要注意点は、空白部分の(兄火・弟火) を、重複カウントしないことだ。

さてこのうち、2人とも男の子である場 合は、1列目と2列目に並べた13通り。つ まり、もう1人も男の子である確率は、27 分の13(約48%)となり、これが正しい答 えだ。この確率は、3分の1よりもだいぶ大 きくなり、むしろ2分の1に近い。

この様子を図を使って理解してみよ

う。第1子を縦軸、第2子を横軸として、性 別と何曜日生まれかを図示すると、196個 のセルのどれかとなる。各セルが発生する 確率は、全部同じだ。

前の問題では、青い太枠部分内のセル (147個)のうち、赤い太枠部分内のセル (49個)の比率が問われている。したがっ て、もう1人も男の子である確率は、3分の 1であった。

一方、後の問題では、青色または赤色に 色塗りしたセル(27個)のうち、赤色のセ ル (13個)の比率が問われている。このた め、もう1人も男の子である確率は、27分 の13ということになる。

どういう仕組みで、このようなことにな るのだろうか。実は、男の子だとわかった1 人に何らかの条件が付けば付くほど、2人 ともその条件を満たすことはレアケースと なり、もう1人も男の子である確率は、そ のもう1人のみで考えた場合の確率、つま り2分の1に近づくのだ。

このように、確率は、一見、無関係な情報 によって、変化することがある。

いま、世の中は、デジタル革命の真っ只 中といわれる。ビジネスでは、ビッグデー 夕をもとに、経営者がさまざまな判断を行 うようになってきている。どの情報をとる か、捨てるか。確率の評価には、情報の取捨 選択のセンスが問われるものと思われる が、いかがだろうか。